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Abstract— Convolutional LDPC ensembles, introduced by Fel-
ström and Zigangirov, have excellent thresholds and these thresh-
olds are rapidly increasing as a function of the average degree.
Several variations on the basic theme have been proposed to
date, all of which share the good performance characteristics
of convolutional LDPC ensembles. We describe the fundamental
mechanism which explains why “convolutional-like” or “spatially
coupled” codes perform so well. In essence, the spatial coupling
of the individual code structure has the effect of increasing
the belief-propagation (BP) threshold of the new ensemble to
its maximum possible value, namely the maximum-a-posteriori
(MAP) threshold of the underlying ensemble. For this reason
we call this phenomenon “threshold saturation”. This gives
an entirely new way of approaching capacity. One significant
advantage of such a construction is that one can create capacity-
approaching ensembles with an error correcting radius which
is increasing in the blocklength. Our proof makes use of the
area theorem of the BP-EXIT curve and the connection between
the MAP and BP threshold recently pointed out by Méasson,
Montanari, Richardson, and Urbanke. Although we prove the
connection between the MAP and the BP threshold only for a
very specific ensemble and only for the binary erasure channel,
empirically the same statement holds for a wide class of ensembles
and channels. More generally, we conjecture that for a large
range of graphical systems a similar collapse of thresholds occurs
once individual components are coupled sufficiently strongly.
This might give rise to improved algorithms as well as to new
techniques for analysis.

I. INTRODUCTION

We consider the design of capacity-approaching codes based
on the connection between the BP and MAP threshold of
sparse graph codes. Recall that the BP threshold is the thresh-
old of the “locally optimum” BP message-passing algorithm.
As such it has low complexity. The MAP threshold, on the
other hand, is the threshold of the “globally optimum” decoder.
No decoder can do better, but the complexity of the MAP
decoder is in general high. Surprisingly, for sparse graph codes
there is a connection between these two thresholds which
emerges in the limit of infinitely large blocklengths, see [1],
[2]. We discuss a fundamental mechanism which ensures that
these two thresholds coincide (or at least are very close).
We call this phenomenon “threshold saturation via spatial
coupling”. A prime example where this mechanism is at work
are convolutional low-density parity-check (LDPC) ensembles.

These ensembles were introduced by Felström and Zigangirov
[3].

Convolutional LPDC ensembles are constructed by coupling
several standard (l, r)-regular LDPC ensembles together in a
chain. Perhaps surprisingly, due to the coupling the threshold
of the resulting ensemble is considerably improved. Indeed,
if we start with an (3, 6)-regular ensemble then on the BEC
the threshold is improved from εBP(l = 3, r = 6) ≈ 0.4294
to roughly 0.4881 (the capacity for this case is 1

2 ). The latter
number is indeed the MAP threshold εMAP(l, r) of the under-
lying (3, 6)-regular ensemble. In a nutshell, the convolutional
structure allows one to convert the MAP threshold of the
underlying ensemble into the BP threshold of the convolutional
structure. This opens up an entirely new way of constructing
capacity-approaching ensembles. It further shows that it is
possible to construct ensembles that have large BP thresholds
and low error floors, whereas it is a folk theorem that for
standard constructions, improvements in the BP threshold go
hand in hand with increases in the error floor.

The potential of convolutional LDPC codes has long been
recognized. Our contribution lies therefore not in the intro-
duction of a new coding scheme, but in clarifying the basic
mechanism that make convolutional-like ensembles perform
so well. There is a considerable literature on convolutional-
like LDPC ensembles. Variations on the constructions as
well as some analysis can be found in Engdahl and Zigan-
girov [4], Engdahl, Lentmaier, and Zigangirov [5], Lentmaier,
Truhachev, and Zigangirov [6], Papaleo, Iyengar, Siegel, Wolf,
and Corazza [7], as well as Tanner, D. Sridhara, A. Sridhara,
Fuja, and Costello [8]. In [9], Sridharan, Lentmaier, Costello
and Zigangirov consider density evolution (DE) for convo-
lutional LDPC ensembles and determine thresholds for the
BEC. The equivalent observations for general channels were
reported by Lentmaier, Sridharan, Zigangirov and Costello
in [10]. A protograph representation of convolutional LDPC
ensembles was introduced by Lentmaier, Fettweis, Zigangirov
and Costello [11]. In a recent paper [12], Lentmaier and
Fettweis independently formulated the equality of the BP
threshold of convolutional LDPC ensembles and the MAP
threshold of the underlying ensemble as a conjecture. They
attribute this numerical observation to G. Liva.
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II. CONVOLUTIONAL-LIKE LDPC ENSEMBLES

The principle that underlies the good performance of
convolutional-like LDPC ensembles is very broad and there
are many degrees of freedom in constructing such ensembles.
In the sequel we introduce two basic variants. The (l, r, L)-
ensemble is very close to the ensemble discussed in [11].
Experimentally it has a very good performance. We conjecture
that it is capable of achieving capacity. We also introduce the
ensemble (l, r, L, w). Experimentally it shows a worse trade-
off between rate, threshold, and blocklength. But it is easier
to analyze and we will prove that it is capacity achieving. One
can think of w as a “smoothing parameter” and we investigate
the behavior of this ensemble when w tends to infinity.

A. The (l, r, L) Ensemble

The left-hand side of Figure 1 shows the protograph of a
standard (3, 6)-regular ensemble. There are two variable nodes
and there is one check node. Let M denote the number of
variable nodes at each position. For our example, M = 100
means that we have 50 copies of the protograph so that we
have 100 variable nodes at each position. Next, consider a
collection of (2L+1) such protographs as shown on the right-
hand side of Figure 1. These protographs are non-interacting

-L 0 L

Fig. 1. Left figure shows the protograph of a standard (3, 6)-regular
ensemble. The figure on the right illustrates a chain of (2L+ 1) protographs
of the standard (3, 6)-regular ensemble for L = 9. These protographs do not
interact.

and so each component behaves just like a standard (3, 6)-
regular component. In particular, the BP threshold of each
protograph is just the standard threshold, call it εBP(l = 3, r =
6). Slightly more general; start with an (l, r = kl)-regular
ensemble where l is odd so that l̂ = (l− 1)/2 ∈ N.

An interesting phenomenon occurs if we couple these com-
ponents. To achieve this coupling, connect each protograph to
l̂ protographs “to the left” and to l̂ protographs “to the right.”
This is shown in Figure 2 for the case (l = 3, r = 6) and
L = 9. An extra l̂ check nodes are added on each side to
connect the “overhanging” edges at the boundary. There are
two main effects resulting from this coupling:
(i) Rate Reduction: Recall that the design rate of the under-
lying standard (l, r = kl)-regular ensemble is 1− l

r
= k−1

k .
Let us determine the design rate of the corresponding (l, r =
kl, L) ensemble. By design rate we mean here the rate that
we get if we assume that every involved check node imposes
a linearly independent constraint.

The variable nodes are indexed from −L to L so that in
total there are (2L + 1)M variable nodes. The check nodes
are indexed from −(L+ l̂) to (L+ l̂), so that in total there are

-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

Fig. 2. A coupled chain of protographs with L = 9 and (l = 3, r = 6).

(2(L+ l̂)+1)M/k check nodes. We see that, due to boundary
effects, the design rate is reduced to

R(l, r = kl, L) =
k − 1
k
− 2l̂
k(2L+ 1)

.

(ii) Threshold Increase: The threshold changes dramatically
from εBP(l, r) to something close to εMAP(l, r) (the MAP
threshold of the underlying standard (l, r)-regular ensemble).
This phenomenon (which we call ”threshold saturation”) is
much less intuitive and it is the aim of this paper to explain
why this happens.

So far we have considered as starting points (l, r = kl)-
regular ensembles. Let us now give a general definition of the
(l, r, L)-ensemble which works for all parameters (l, r) so
that l is odd. Rather than starting from a protograph, place
variable nodes at positions [−L,L]. At each position there
are M such variable nodes. Place l

r
M check nodes at each

position [−L− l̂, L+ l̂]. Connect exactly one of the l edges
of each variable node at position i to a check node at position
i− l̂, . . . , i+ l̂.

The next lemma asserts that the minimum stopping set
distance of most codes is at least a fixed fraction of M . For
the proof technique we follow the lead [13], [14].

Lemma 1 (Stopping Set Distance of (l, r, L)-Ensemble):
Consider the (l, r, L)-ensemble with l = 2l̂ + 1, l̂ ≥ 1, and
r ≥ l. Define

p(x) =
∑
i 6=1

(
r

i

)
xi, a(x) = (

∑
i6=1

(
r

i

)
ixi)/(

∑
i 6=1

(
r

i

)
xi),

b(x) = −(l− 1)h2(a(x)/r) +
l

r
log2(p(x))− a(x)

l

r
log2(x),

ω(x) = a(x)/r, h2(x) = −x log2(x)− (1− x) log2(1− x).

Let x̂ denote the unique strictly positive solution of the
equation b(x) = 0 and let ω̂(l, r) = ω(x̂). Then, for any
δ > 0,

lim
M→∞

P{dss(C)/M < (1− δ)lω̂(l, r)} = 0,

where dss(C) denotes the minimum stopping set distance of
the code C.
Discussion: The quantity ω̂(l, r) is the relative weight (nor-
malized to the blocklength) at which the exponent of the
expected stopping set distribution of the underlying standard
(l, r)-regular ensemble becomes positive. It is perhaps not
too surprising that the same quantity also appears in our
context. The lemma asserts that the minimum stopping set
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distance grows linearly in M . But the stated quantity does not
scale with L. We leave it as an interesting open problem to
determine whether the stated quantity is only a lower bound
or indeed equal to the typical relative stopping set distance.

B. The (l, r, L, w) Ensemble

In order to simplify the analysis we modify the ensemble
(l, r, L) by adding a randomization of the edge connections.
For the remainder of this paper we always assume that r ≥ l,
so that the ensemble has a non-trivial design rate.

We assume that the variable nodes are at positions [−L,L],
L ∈ N. At each position there are M variable nodes, M ∈
N. Conceptually we think of the check nodes to be located
at all integer positions from [−∞,∞]. Only some of these
positions actually interact with the variable nodes. At each
position there are l

r
M check nodes. It remains to describe

how the connections are chosen.
Rather than assuming that a variable at position i has exactly

one connection to a check node at position [i− l̂, . . . , i+ l̂],
we assume that each of the l connections of a variable node
at position i is uniformly and independently chosen from the
range [i, . . . , i+w− 1], where w is a “smoothing” parameter.
In the same way, we assume that each of the r connections of
a check node at position i is independently chosen from the
range [i− w + 1, . . . , i]. We no longer require that l is odd.

As discussed beforehand, we will always consider the limit
in which M first tends to infinity and then the number of
iterations tend to infinity. Therefore, for any fixed number of
rounds of DE the probability model is exactly the independent
model described above1.

Lemma 2 (Design Rate): The design rate of the ensemble
(l, r, L, w), with w ≤ 2L, is given by

R(l, r, L, w) = (1− l

r
)− l

r

w + 1− 2
∑w

i=0

(
i
w

)r
2L+ 1

.

There are many variations on the theme that show the same
qualitative behavior. For real applications, these variations are
vital to achieve the best trade-offs. However, the main aim of
this paper is to explain why coupled LDPC codes perform so
well rather than optimizing the ensemble. Therefore, despite
the practical importance of these variations, we focus on the
ensemble (l, r, L, w). It is the simplest to analyze.

III. MAIN STATEMENT AND INTERPRETATION

A. The (l, r, L) Ensemble

Consider the EBP EXIT curve of the (l, r, L) ensemble.2

It is shown in Figure 3 for various values of L. Note that
these EBP EXIT curves show a dramatically different behavior

1We refer the reader to [15] for the exact description of the (l, r, L, w)
ensemble.

2For a general introduction into EBP EXIT curves of LDPC ensembles see
[16]. To compute this curve we proceed as follows. We fix a desired entropy
(defined to be the average of the erasure message of a variable node in each
section) value, χ. We initialize the constellation with the constant χ. We then
repeatedly perform one step of DE, where in each step we fix ε in such a way
that the entropy of the resulting constellation is equal to χ. This procedure is
the equivalent of the procedure introduced in [17, Section VIII] to compute
the EBP EXIT curve for general binary-input memoryless output-symmetric
channels.

h
E

B
P

ε

εB
P
(3

,6
)
≈

0.
42

94
εM

A
P
(3

,6
)
≈

0.
48

81

L=1

L=2

h
E

B
P

ε
Fig. 3. The figure on the left depicts the EBP EXIT curves of
the ensemble (3, 6, L) for L = 1, 2, 4, 8, 16, 32, 64, and 128. The
BP/MAP thresholds are εBP/MAP(3, 6, 1) = 0.714309/0.820987,
εBP/MAP(3, 6, 2) = 0.587842/0.668951, εBP/MAP(3, 6, 4) =
0.512034/0.574158, εBP/MAP(3, 6, 8) = 0.488757/0.527014,
εBP/MAP(3, 6, 16) = 0.488151/0.505833, εBP/MAP(3, 6, 32) =
0.488151/0.496366, εBP/MAP(3, 6, 64) = 0.488151/0.492001,
εBP/MAP(3, 6, 128) = 0.488151/0.489924. The light/dark gray areas
mark the interior of the BP/MAP EXIT function of the underlying (3, 6)-
regular ensemble, respectively. The figure on the right shows the wiggles
in the EBP EXIT curve for the (3, 6, 32) ensemble. The circle shows a
magnified portion of the curve. The horizontal magnification is 107, the
vertical one is 1.

compared to the EBP EXIT curve of the underlying ensemble.
These curves appear to be “to the right” of the threshold
εMAP(3, 6) ≈ 0.48815. For small values of L one might be
led to believe that this is true since the design rate of such an
ensemble is considerably smaller than 1 − l/r. But even for
large values of L, where the rate of the ensemble is close to
1 − l/r, this dramatic increase in the threshold is still true.
Emperically we see that, for L increasing, the EBP EXIT
curve approaches the MAP EXIT curve of the underlying
(3, 6)-regular ensemble from the right. In particular, for ε ≈
εMAP(l, r) the EBP EXIT curve drops essentially vertically
until it hits zero. We will see that this is a fundamental property
of this construction.

B. Discussion

A look at Figure 3 might convey the impression that the
transition of the EBP EXIT function is completely flat and
that the threshold of the ensemble (l, r, L) is exactly equal to
the MAP threshold of the underlying (l, r)-regular ensemble
when L tends to infinity.

Unfortunately, the actual behavior is more subtle. Figure 3,
on the right, shows the EBP EXIT curve for L = 32 with a
small section of the transition greatly magnified. As one can
see from this magnification, the curve is not flat but exhibits
small “wiggles” in ε around εMAP(l, r). These wiggles do not
vanish as L tends to infinity but their width remains constant.
As we will see later, area considerations imply that, in the limit
as L diverges to infinity, the BP threshold is slightly below
εMAP(l, r).

Emperically, these wiggles are very small (e.g., they are
of width 10−7 for the (3, 6, L) ensemble), and further, these
wiggles tend to 0 when l is increased. Unfortunately this is
hard to prove. We therefore study the ensemble (l, r, L, w).
The wiggles for this ensemble are in fact larger, but they can
be made arbitrarily small by letting w tend to infinity.
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As pointed out in the introduction, numerical experiments
indicate that there is a large class of convolutional-like LDPC
ensembles that all have the property that their BP threshold
is “close” to the MAP threshold of the underlying ensemble.
Unfortunately, no general theorem is known to date that states
when this is the case. The following theorem gives a particular
instance of what we believe is a general principle. The bounds
stated in the theorem are loose and can likely be improved.

C. Main Statement

Theorem 3 (BP Threshold of the (l, r, L, w) Ensemble):
Consider transmission over the BEC(ε) using random
elements from the ensemble (l, r, L, w) with l ≥ 3. Let
εBP(l, r, L, w) denote the BP threshold and let R(l, r, L, w)
denote the design rate of this ensemble. Then, in the limit as
M tends to infinity, and for w > w(l, r),

εMAP(l, r, L, w) ≤ εMAP(l, r)+
w

2L(1−(1−xMAP)r−1)l
,

εBP(l, r, L, w)≥
(
εMAP(l, r)−w− 1

8

8lr+ 4rl2

(1−4w−
1
8 )r

(1−2−
1
r )2

)(
1−4w- 1

8
)rl
.

In the limit as M , L and w (in that order) tend to infinity,

lim
w→∞

lim
L→∞

R(l, r, L, w) = 1− l

r
,

lim
w→∞

lim
L→∞

εBP(l, r, L, w) = lim
L→∞

εMAP(l, r, L, w) = εMAP(l, r).
Discussion:

(i) The constant w(l, r) is strictly positive, and it depends
only on l, r. An explicit expression can be found in
[15], from which one can see that the lower bound is
positive. Above, xMAP is the stable fixed-point of DE
at εMAP(l, r) for the (l, r)-regular ensemble. The lower
bound on εBP(l, r, L, w) is the main result of the paper. It
shows that, up to a term which tends to zero when w tends
to infinity, the threshold of the chain is equal to the MAP
threshold of the underlying ensemble. The statement in
the theorem is weak. The convergence speed w.r.t. w is
most likely exponential. We prove only a convergence
speed of w−

1
8 . We pose it as an open problem to improve

this estimate.
(ii) The MAP threshold εMAP(l, r) of the underlying ensemble

quickly approaches the Shannon limit (see [16]). We
therefore see that convolutional-like ensembles provide
a way of approaching capacity with low complexity.
E.g., for a rate equal to one-half, we get εMAP(3, 6) =
0.48815, εMAP(4, 8) = 0.49774, εMAP(5, 10) = 0.499486,
εMAP(6, 12) = 0.499876, εMAP(7, 14) = 0.499969.

D. Proof Outline for the Lower Bound

The proof of the lower bound on εBP(l, r, L, w) in Theo-
rem 3 is long. Due to space limitations, we only provide a
short outline. A detailed proof can be found in [15].
(i) Existence of Fixed-Point (FP): “The” key to the proof is to
show the existence of a unimodal FP (ε∗, x∗) which takes on
an essentially constant value in the “middle” (≈ xs(ε∗))3, has

3xs(ε∗) is the stable FP of DE at ε∗ for standard (l, r)-regular ensemble.

a fast “transition”, and has arbitrarily small values towards the
boundary. Figure 4 shows a typical such example. We will see

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

Fig. 4. Unimodal FP of the (l = 3, r = 6, L = 16, w = 3) ensemble with
small values towards the boundary, a fast transition, and essentially constant
values in the middle.

shortly that the associated channel parameter, ε∗, of such a FP
is necessarily very close to εMAP(l, r).
(ii) Construction of EXIT Curve: Once we have established
the existence of such a special FP we construct from it a
whole FP family. The elements in this family of FPs look
essentially identical. I.e., they differ only in their “width”
and their channel parameter is very close to ε∗. This width
changes continuously, initially being equal to roughly 2L+ 1
until it reaches zero. This family “explains” how the overall
constellation collapses once the channel parameter has reached
a value close to εMAP(l, r): starting from the two boundaries,
the whole constellation “moves in” like a wave until the two
wave ends meet in the middle. The EBP EXIT curve is a
projection of this wave (by computing the EXIT value4 of
each member of the family). If we look at the EBP EXIT
curve, this phenomenon corresponds to the very steep vertical
transition close to εMAP(l, r).

When we construct the above family of FPs it is mathemat-
ically convenient to allow the channel parameter ε to depend
on the position. Let us describe this in more detail.

We start with a special FP as depicted in Figure 4. From
this we construct a smooth family (ε(α), x(α)), parameterized
by α, α ∈ [0, 1], where x(1) = 1 and where x(0) = 0.
The components of the vector ε(α) are essentially constants
(for α fixed). The possible exceptions are components towards
the boundary. We allow those components to take on larger
(than in the middle) values. From the family (ε(α), x(α))
we then derive an EBP EXIT curve. This smooth family of
FPs essentially traces out (starting from α = 1) the EBP-
EXIT curve for (l, r)-regular ensemble till all the channel
components are just greater than ε∗. After this point, we show
that for a “majority” portion of α, the components of ε(α) are
essentially equal to ε∗. We then measure the area enclosed by
this curve. We show that this area is close to the design rate
and conclude that ε∗ ≈ εMAP(l, r).
(iii) Operational Meaning of EXIT Curve: We finally show that
the EBP EXIT curve constructed in step (ii) has an operational
meaning. More precisely, we show that if we pick ε < ε∗ then
forward DE converges to the trivial FP.

IV. DISCUSSION AND POSSIBLE EXTENSIONS

A. New Paradigm for Code Design
The explanation of why convolutional-like LDPC ensembles

perform so well given in this papers gives rise to a new

4EXIT value of each FP is the average of the EXIT value of each section.
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paradigm in code design. In known graphical designs one
encounters typically a trade-off between the threshold and
the error floor behavior. E.g., for standard irregular graphs
an optimization of the threshold tends to push up the number
of degree-two variable nodes. The same quantity, on the other
tends to favor the existence of low weight (pseudo)codewords.

For convolutional-like LDPC ensembles the important op-
erational quantity is the MAP threshold of the underlying
ensemble. As, e.g., regular LDPC ensembles show, it is
simple to improve the MAP threshold and to improve the
error-floor performance – just increase the minimum variable-
node degree. An emperical study of the threshold saturation
phenomenon for transmission over an additive white Gaussian
noise channel can be found in [18].

B. Scaling Behavior

In our design there are three parameters that tend to infinity.
The number of variables nodes at each position, called M , the
length of the constellation L, and the length of the smoothing
window w. Assume we fix w and we are content with
achieving a threshold slightly below the MAP threshold. How
should we scale M with respect to L so that we achieve the
best performance? This question is of considerable practical
importance. Recall that the total length of the code is of order
L ·M . We would therefore like to keep this product small.
Further, the rate loss is of order 1/L (so L should be large) and
M should be chosen large so as to approach the performance
predicted by DE. Finally, how does the number of required
iterations scale as a function of L?

Also, in the proof we assumed that we fix L and let M tend
to infinity so that we can use DE techniques. We have seen
that in this limit the boundary conditions of the constellation
dictate the performance of the system regardless of the size of
L (as long as L is fixed and M tends to infinity). Is the same
behavior still true if we let L tend to infinity as a function of
M? At what scaling does the behavior change?

C. Extension to General Coupled Graphical Systems

Codes based on graphs are just one instance of graphical
systems that have distinct thresholds for “local” algorithms
(BP threshold) and for “optimal” algorithms (MAP threshold).
To be sure, coding is somewhat special – it is conjectured that
the so-called replica-symmetric solution always determines the
threshold under MAP processing for codes based on graphs.
Nevertheless, it is interesting to investigate to what extent
the coupling of general graphical systems shows a similar
behavior. Is there a general class of graphical models in which
the same phenomena occurs? If so, can this phenomenon either
be used to analyze systems or to devise better algorithms?

D. Why are Coupled Codes so Good?

For (uncoupled) LDPC ensembles it was shown in [2] that
a suitable modified BP decoder, called the Maxwell decoder,
is capable of decoding up to the MAP threshold. All the BP
requires is some ”push”. For the Maxwell decoder this push
is provided in the form of guesses. For the coupled case it

is the spatial arrangement which provides this push. The key
lies in the existence of the special FP as discussed in point
(i) of Section III-D. As this FP indicates, the information
can flow along the chain of coupled graphs starting from the
boundary, where everything is known, towards the inside of
the constellation. Neighbors are helping neighbors – how nice.
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